Inverse Trigonometric Functions - Formulas, Graphs & Problems

Inverse trigonometric functions are mathematical functions that calculate the angle or angle measure given the ratio of two sides of a right-angled triangle. In other words, they are the inverse operations of the trigonometric functions (sine, cosine, tangent, cosecant, secant, and cotangent).

For example, if we know the value of sine of an angle, we can use the arcsine function (or sin-1 function) to find the angle. Similarly, if we know the value of cosine of an angle, we can use the arccosine function (or cos-1 function) to find the angle, and so on for the other trigonometric functions.

Inverse Trigonometric Formulas

here are the basic inverse trigonometric formulas:

Function Notation Formula Domain
Arcsine sin-1(x) or arcsin(x) sin-1(-x) = -sin-1(x) x ∈ [-1, 1]
Arccosine cos-1(x) or arccos(x) cos-1(-x) = π - cos-1(x) x ∈ [-1, 1]
Arctangent tan-1(x) or arctan(x) tan-1(-x) = -tan-1(x) x ∈ R
Arccotangent cot-1(x) or arccot(x) cot-1(-x) = π - cot-1(x) x ∈ R
Arcsecant sec-1(x) or arcsec(x) sec-1(-x) = π - sec-1(x) |x| ≥ 1
Arccosecant csc-1(x) or arccsc(x) csc-1(-x) = -csc-1(x) |x| ≥ 1

Graph of Arcsine Function

Inverse Trigonometric Functions Table

Function Name Notation Definition Domain of x Range
Arcsine or inverse sine y = sin-1(x) x = sin y -1 ≤ x ≤ 1 -π/2 ≤ y ≤ π/2
-90° ≤ y ≤ 90°
Arccosine or inverse cosine y = cos-1(x) x = cos y -1 ≤ x ≤ 1 0 ≤ y ≤ π
0° ≤ y ≤ 180°
Arctangent or inverse tangent y = tan-1(x) x = tan y For all real numbers -π/2 < y < π/2
-90° < y < 90°
Arccotangent or inverse cot y = cot-1(x) x = cot y For all real numbers 0 < y < π
0° < y < 180°
Arcsecant or inverse secant y = sec-1(x) x = sec y x ≤ -1 or 1 ≤ x 0 ≤ y < π/2 or π/2 < y ≤ π
0° ≤ y < 90° or 90° < y ≤ 180°
Arccosecant or inverse cosecant y = csc-1(x) x = csc y x ≤ -1 or 1 ≤ x -π/2 ≤ y < 0 or 0 < y ≤ π/2
-90° ≤ y < 0° or 0° < y ≤ 90°

Inverse Trigonometric Functions Derivatives

Inverse Trig Function dy/dx
y = sin-1(x) 1/√(1-x2)
y = cos-1(x) -1/√(1-x2)
y = tan-1(x) 1/(1+x2)
y = cot-1(x) -1/(1+x2)
y = sec-1(x) 1/[|x|√(x2-1)]
y = csc-1(x) -1/[|x|√(x2-1)]


inverse trigonometric functions, inverse trig functions, differentiation of tan inverse x, inverse trigonometry formula, cos inverse x, inverse trig, differentiation of cos inverse x, inverse trigonometric functions formulas, inverse trigonometry, differentiation of inverse trigonometric functions,

avatar

Bhaskar Singh

I am the founder and author of knowledgewap.org. We provides high-quality, informative content on diverse topics such as technology, science, lifestyle, and personal development. With a passion for knowledge and engaging writing style, We are committed to keeping his readers up-to-date with the latest developments in their fields of interest. Know more

Related Post